
To make your car handle, design a suspension system, or just learn about chassis, you'll find what you need here. Basic suspension theory is thoroughly covered: roll center, roll axis, camber change, bump steer, anti-dive, ride rate, ride balance and more. How to choose, install and modify suspensions and suspension hardware for best handling: springs, sway bars, shock absorbers, bushings, tired and wheels. Regardless of the basic layout of your car—front engine/rear drive, front engine/front drive, or rear engine/rear drive—it is covered here. Aerodynamic hardware and body modifications for reduced drag, high-speed stability and increased cornering power: spoilers, air dams, wings and ground-effects devices. How to modify and set up brakes for maximum stopping power and handling. The most complete source of handling information available. “Suspension secrets” explained in plain, understandable language so you can be the expert.

This comprehensive overview of chassis technology presents an up-to-date picture for vehicle construction and design engineers in education and industry. The book acts as an introduction to the engineering design of the automobile's fundamental mechanical systems. Clear text and first class diagrams are used to relate basic engineering principles to the particular requirements of the chassis. In addition, the 2nd edition of 'The Automotive Chassis' has a new author team and has been completely updated to include new technology in total vehicle and suspension design, including platform concept and four-wheel drive technology.

The introduction of mechatronic components for the powertrain, steering and braking systems opens the way to automatic driving functions. Together with internal and environmental sensors, various driver assistance systems are going to be developed for improving driving comfort and safety. Automatic driving control functions suppose a well-designed vehicle behavior. In order to develop and implement the software-based control functions mathematical vehicle models for the stationary and dynamic behavior are required. The book first introduces basic theoretically derived models for the tire traction and force transfer, the longitudinal, lateral, roll and pitch dynamic behavior and related components, like suspensions, steering systems and brakes. These models have to be tailored to allow an identification of the many unknown parameters during driving, also in dependence of different road conditions, velocity and vehicle load. Based on these mathematical models drive dynamic control systems are developed for semi-active and active suspensions, hydraulic and electromechanical brakes including ABS, traction and steering control. Then driver assistance systems like adaptive cruise control (ACC), electronic stability control (ESC), electronic course control and anti-collision control systems are
considered. The anti-collision systems are designed and tested for emergency braking, emergency steering and avoiding of overtaking accidents. The book is dedicated to automotive engineers as well as to graduate students of mechanical, electrical and mechatronic engineering and computer science.

This book offers an advanced treatise of the mechanics of springs with focus on the springs for automotive industry. It demonstrates new and original results for the optimization of helical springs as well as the design of disk springs and thin-walled springs and presents the new results for creep and relaxation of springs made of steel under high static loads. The fatigue of springs and weak link concept for cyclically loaded springs are enlightened. The closed form solutions of advanced problems allow the deeper understanding of spring mechanics and optimization of energy harvesters.

This complete racer’s reference is the perfect resource for all drivers from novice to expert. The fundamentals of fast driving are revealed in this definitive how-to book for racers. You will find the competition-proven methods of instructors and of professional drivers that will give you the know-how to work up the track and stay at the front. Interested in the world of racing? Just think, you can have all of the lessons and insights from Skip Barber instructors and from professional racers compiled in one handbook. This racing reference reveals the secrets of mastering car control, reducing lap times, as it takes the reader inside the world of racing. Going Faster! is the definitive book for the active race driver, the racer-to-be, and the auto-racing fan who wants to know what driving a racecar is really about.

Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicles. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability control has been enhanced. The use of feedback control systems on automobiles is growing rapidly. This book is intended to serve as a useful resource to researchers who work on the development of such control systems, both in the automotive industry and at universities. The book can also serve as a textbook for a graduate level course on Vehicle Dynamics and Control.

Ever stringent vehicle safety legislation and consumer expectations inspire the improvement of vehicle dynamic performance, which result in a rising number of control strategies for vehicle dynamics that rely on driving conditions. Road profiles, as the primary excitation source of vehicle systems, play a critical role in vehicle dynamics and also in public transportation. Knowledge of precise road conditions can thus be of great assistance for vehicle companies and government departments to develop proper dynamic control algorithms, and to fix roads in a timely manner and at the minimum cost, respectively. As a result, developing easy-to-use and accurate road estimation methods are of great importance in terms of reducing the cost related to vehicles and road maintenance as well as improving passenger comfort and handling capacity. A few books have already been published on road profile modeling and the influence of road unevenness on vehicle response. However, there is still room to discuss road assessment methods based on vehicle response and how road conditions can be used to improve vehicle dynamics. In this book, we use several generalized vehicle models to demonstrate the concepts, methods, and applications of vehicle response-based road estimation algorithms. In addition, necessary tools, algorithms, and methods are illustrated, and the benefits of the road estimation algorithms are evaluated. Furthermore, several case studies of controllable suspension systems to improve vehicle vertical dynamics are presented.

DivTurn your daily driver, weekend fun ride, or track car into a corner-carving performance machine. From planning a course of modifications to installing parts to tuning handling characteristics, High-
Performance Handling for Street or Track will have you cranking out high-g cornering forces on your favorite twisty course. Topics covered in High-Performance Handling for Street or Track include:

- An overview of vehicle dynamics
- How to tune handling for differing applications
- Guidance for selecting aftermarket components, including anti-roll bars, springs, shocks, bushings, chassis braces, camber adjusters, wheels, and brakes
- Tire and wheel selection advice
- Case-study projects Whether you're building a high-performance street car, an autocrosser, or a track-day machine, High-Performance Handling for Street or Track will help you create an integrated suspension system and tune it for maximum performance.

The aim of the book is to be a reference book in automotive technology, as far as automotive chassis (i.e. everything that is inside a vehicle except the engine and the body) is concerned. The book is a result of a decade of work heavily sponsored by the FIAT group (who supplied material, together with other automotive companies, and sponsored the work). The first volume deals with the design of automotive components and the second volume treats the various aspects of the design of a vehicle as a system.

Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 13: Noise, Vibration and Harshness (NVH) focuses on:

- Chassis Vibration and Noise Control
- Transmission Vibration and Noise Control
- Engine Vibration and Noise Control
- Body Vibration and Noise Control
- Vehicle Vibration and Noise Control
- Analysis and Evaluation of In-Car Vibration & Noise
- Wind Noise Control Technology
- Vibration and Noise Testing Technology

Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.

Maurice Olley, one of the great automotive design, research and development engineers of the 20th century, had a career that spanned two continents. Olley is perhaps best known for his systematic approach to ride and handling. His work was so comprehensive that many of the underlying concepts, test procedures, analysis, and evaluation techniques are still used in the auto industry today. Olley's mathematical analyses cover design essentials in a physically understandable way. Thus they remain as useful today as when they were first developed. For example, they are easily programmed for study or routine use and for checking the results of more complex programs. Chassis Design – Principles and Analysis is based on Olley's technical writings, and is the first complete presentation of his life's work. This new book provides insight into the development of chassis technology and its practical application by a master. Many examples are worked out in the text and the analytical developments are underpinned by Olley's years of design experience. COMPLETE CONTENTS Maurice Olley – his life and times Tyres and steady-state cornering – slip angle effects (primary) Steady-state cornering – steer effects (secondary) Transient cornering Ride Oscillations of the unsprung Suspension linkages Roll, roll moments, and skew rates Fore-and-aft forces Leaf springs – combined suspension spring and linkage Appendices Comprehensive and well-illustrated with over 400 figures and tables, as well as numerous appendices.

Featuring contributions from leading experts, the Road and Off-Road Vehicle System Dynamics Handbook provides comprehensive, authoritative coverage of all the major issues involved in road vehicle dynamic behavior. While the focus is on automobiles, this book also highlights motorcycles, heavy commercial vehicles, and off-road vehicles. The authors

Written for students and practicing engineers working in automotive engineering, this book provides a
fundamental yet comprehensive understanding of chassis systems and requires little prior knowledge on the part of the reader. It presents the material in a practical and realistic manner, using reverse engineering as a basis for examples to reinforce understanding of the topics. The specifications and characteristics of vehicles currently on the market are used to exemplify the theory's application, and care is taken to connect the various topics covered, so as to clearly demonstrate their interrelationships. The book opens with a chapter on basic vehicle mechanics, which include the forces acting on a vehicle in motion, assuming a rigid body. It then proceeds to a chapter on steering systems, which provides readers with a firm understanding of the principles and forces involved under static and dynamic loading. The next chapter focuses on vehicle dynamics by considering suspension systems—tyres, linkages, springs, dampers etc. The chapter on chassis structures and materials includes analysis tools (typically, finite element analysis) and design features that are used to reduce mass and increase occupant safety in modern vehicles. The final chapter on Noise, Vibration and Harshness (NVH) includes a basic overview of acoustic and vibration theory and makes use of extensive research investigations and practical experience as a means of addressing NVH issues. In all subject areas the authors take into account the latest trends, anticipating the move towards electric vehicles, on-board diagnostic monitoring, active systems and performance optimisation. The book features a number of worked examples and case studies based on recent research projects. All students, including those on Master's level degree courses in Automotive Engineering, and professionals in industry who want to gain a better understanding of vehicle chassis engineering, will benefit from this book.

Engineering principles for dynamics vehicles.

This book takes a look at fully automated, autonomous vehicles and discusses many open questions: How can autonomous vehicles be integrated into the current transportation system with diverse users and human drivers? Where do automated vehicles fall under current legal frameworks? What risks are associated with automation and how will society respond to these risks? How will the marketplace react to automated vehicles and what changes may be necessary for companies? Experts from Germany and the United States define key societal, engineering, and mobility issues related to the automation of vehicles. They discuss the decisions programmers of automated vehicles must make to enable vehicles to perceive their environment, interact with other road users, and choose actions that may have ethical consequences. The authors further identify expectations and concerns that will form the basis for individual and societal acceptance of autonomous driving. While the safety benefits of such vehicles are tremendous, the authors demonstrate that these benefits will only be achieved if vehicles have an appropriate safety concept at the heart of their design. Realizing the potential of automated vehicles to reorganize traffic and transform mobility of people and goods requires similar care in the design of vehicles and networks. By covering all of these topics, the book aims to provide a current, comprehensive, and scientifically sound treatment of the emerging field of "autonomous driving".

This is the first book to combine classical vehicle dynamics with electronic control. The equation-based presentation of the theory behind vehicle dynamics enables readers to develop a thorough understanding of the key attribute to both a vehicle's driveability and its active safety. Supported by MATLAB tools, the key areas that affect vehicle dynamics are explored including tire mechanics, the steering system, vehicle roll, traction and braking, 4WS and vehicle dynamics, vehicle dynamics by vehicle and human control, and controllability. As a professional reference volume, this book is an essential addition to the resources available to anyone working in vehicle design and development. Written by a leading authority in the field (who himself has considerable practical experience), the book has a unique blend of theory and practice that will be of immense value in this applications based field. Get a thorough understand of why vehicles respond they way they do with a complete treatment of vehicle dynamics from theory to application Full of case studies and worked examples using MATLAB/Simulink Covers all variables of vehicle dynamics including tire and vehicle motion, control aspects, human control and external disturbances

The definitive book on tire mechanics by the acknowledged world expert Covers everything you need to
know about pneumatic tires and their impact on vehicle performance, including mathematic modeling and its practical application. Written by the acknowledged world authority on the topic and the name behind the most widely used model, Pacejka’s ‘Magic Formula’. Updated with the latest information on new and evolving tire models to ensure you can select the right model for your needs, apply it appropriately and understand its limitations. In this well-known resource, leading tire model expert Hans Pacejka explains the relationship between operational variables, vehicle variables and tire modeling, taking you on a journey through the effective modeling of complex tire and vehicle dynamics problems. Covering the latest developments to Pacejka’s own industry-leading model as well as the widely-used models of other pioneers in the field, the book combines theory, guidance, discussion and insight in one comprehensive reference. While the details of individual tire models are available in technical papers published by SAE, FISITA and other automotive organizations, Tire and Vehicle Dynamics remains the only reliable collection of information on the topic and the standard go-to resource for any engineer or researcher working in the area. New edition of the definitive book on tire mechanics, by the acknowledged world authority on the topic. Covers everything an automotive engineer needs to know about pneumatic tires and their impact on vehicle performance, including mathematic modelling and its practical application. Most vehicle manufacturers use what is commonly known as Pacejka’s ‘Magic Formula’, the tire model developed and presented in this book.

This book constitutes the thoroughly refereed proceedings of the 18th International Conference on Transport Systems Telematics, TST 2018, held in Krakow, Poland in March 2018. The 36 full papers presented in this volume were carefully reviewed and selected from 128 submissions. They present and organize the knowledge from within the field of telematics in road transport, in rail transport, in marine transport, in air transport, in logistics.

This book introduces the principles and practices in automotive systems, including modern automotive systems that incorporate the latest trends in the automobile industry. The fifteen chapters present new and innovative methods to master the complexities of the vehicle of the future. Topics like vehicle classification, structure and layouts, engines, transmissions, braking, suspension and steering are illustrated with modern concepts, such as battery-electric, hybrid electric and fuel cell vehicles and vehicle maintenance practices. Each chapter is supported with examples, illustrative figures, multiple-choice questions and review questions. Aimed at senior undergraduate and graduate students in automotive/automobile engineering, mechanical engineering, electronics engineering, this book covers the following: Construction and working details of all modern as well as fundamental automotive systems. Complexities of operation and assembly of various parts of automotive systems in a simplified manner. Handling of automotive systems and integration of various components for smooth functioning of the vehicle. Modern topics such as battery-electric, hybrid electric and fuel cell vehicles. Illustrative examples, figures, multiple-choice questions and review questions at the end of each chapter.

This set includes Race Car Vehicle Dynamics, and Race Car Vehicle Dynamics - Problems, Answers and Experiments. Written for the engineer as well as the race car enthusiast, Race Car Vehicle Dynamics includes much information that is not available in any other vehicle dynamics text. Truly comprehensive in its coverage of the fundamental concepts of vehicle dynamics and their application in a racing environment, this book has become the definitive reference on this topic. Although the primary focus is on the race car, the engineering fundamentals detailed are also applicable to passenger car design and engineering. Authors Bill and Doug Milliken have developed many of the original vehicle dynamics theories and principles covered in this book, including the Moment Method, "g-g" Diagram, pair analysis, lap time simulation, and tyre data normalization. The book also includes contributions from other experts in the field. Chapters cover: *The Problem Imposed by Racing *Tire Behavior *Aerodynamic Fundamentals *Vehicle Axis Systems and more. Written for the engineer as well as the race car enthusiast and students, the companion workbook to the original classic book, Race Car Vehicle Dynamics, includes: *Detailed worked solutions to all of the problems *Problems for every chapter in Race Car Vehicle Dynamics, including many new problems *The Race Car Vehicle Dynamics Program Suite (for Windows) with accompanying exercises *Experiments to try with your own vehicle *Educational appendix with additional references and course outlines *Over 90 figures and graphs. This workbook is widely used as a college textbook and has been an SAE International best.
An introduction to vehicle dynamics and the fundamentals of mathematical modeling Fundamentals of Vehicle Dynamics and Modeling is a student-focused textbook providing an introduction to vehicle dynamics, and covers the fundamentals of vehicle model development. It illustrates the process for construction of a mathematical model through the application of the equations of motion. The text describes techniques for solution of the model, and demonstrates how to conduct an analysis and interpret the results. A significant portion of the book is devoted to the classical linear dynamic models, and provides a foundation for understanding and predicting vehicle behaviour as a consequence of the design parameters. Modeling the pneumatic tire is also covered, along with methods for solving the suspension kinematics problem, and prediction of acceleration and braking performance. The book introduces the concept of multibody dynamics as applied to vehicles and provides insight into how large and high fidelity models can be constructed. It includes the development of a method suitable for computer implementation, which can automatically generate and solve the linear equations of motion for large complex models. Key features: ● Accompanied by a website hosting MATLAB code. ● Supported by the Global Education Delivery channels. Fundamentals of Vehicle Dynamics and Modeling is an ideal textbook for senior undergraduate and graduate courses on vehicle dynamics.

This volume of the Lecture Notes in Mobility series contains papers written by speakers and poster presenters at the 21st International Forum on Advanced Microsystems for Automotive Applications (AMAA 2017) “Smart Systems Transforming the Automobile" that was held in Berlin, Germany in September 2017. The authors report about recent breakthroughs in electric and electronic components and systems, driver assistance and vehicle automation as well as safety and testing. Furthermore, legal aspects and impacts of connected and automated driving are covered. The target audience primarily comprises research experts and practitioners in industry and academia, but the book may also be beneficial for graduate students alike.

This book attempts to find a middle ground by balancing engineering principles and equations of use to every automotive engineer with practical explanations of the mechanics involved, so that those without a formal engineering degree can still comprehend and use most of the principles discussed. Either as an introductory text or a practical professional overview, this book is an ideal reference.

The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context, different levels of complexity are presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models based on real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios. In addition to some corrections, further application examples for standard driving maneuvers have been added for the present second edition. To take account of the increased use of driving simulators, both in research, and in industrial applications, a new section on the conception, implementation and application of driving simulators has been added.

Essentials of Vehicle Dynamics explains the essential mathematical basis of vehicle dynamics in a concise and clear way, providing engineers and students with the qualitative understanding of vehicle handling performance needed to underpin chassis-related research and development. Without a sound understanding of the mathematical tools and principles underlying the complex models in vehicle dynamics, engineers can end up with errors in their analyses and assumptions, leading to costly mistakes in design and virtual prototyping activities. Author J oop P. Pauwelussen looks to rectify this by drawing on his 15 years' experience of helping students and professionals understand the vehicle as a dynamic system. He begins as simply as possible before moving on to tackle models of increasing complexity, emphasizing the critical role played by tire-road contact and the different analysis tools required to consider non-linear dynamical systems. Providing a basic mathematical background that is ideal for students or those with practical experience who are struggling with the theory, Essentials of Vehicle Dynamics is also intended to help engineers from different disciplines, such as control and
electronic engineering, move into the automotive sector or undertake multi-disciplinary vehicle
dynamics work. Focuses on the underlying mathematical fundamentals of vehicle dynamics, equipping
engineers and students to grasp and apply more complex concepts with ease. Written to help
engineers avoid the costly errors in design and simulation brought about by incomplete understanding
of modeling tools and approaches. Includes exercises to help readers test their qualitative
understanding and explain results in physical and vehicle dynamics terms.

Covers the development and tuning of race car by clearly explaining the basic principles of vehicle
dynamics and relating these principles to the input and control functions of the racing driver. An
exceptional book written by a true professional.

In einer sich rasant verändernden Welt sieht sich die Automobilindustrie fast täglich mit neuen
Herausforderungen konfrontiert: Der problematischer werdende Ruf des Dieselmotors, verunsicherte
Verbraucher durch die in der Berichterstattung vermischte Thematik der Stickoxid- und
Feinstaubemissionen, zunehmende Konkurrenz bei Elektroantrieben durch neue Wettbewerber, die
immer schwieriger werdende öffentlichkeitswirksame Darstellung, dass ein groß erschien. Unterschieden
zwischen Prototypen, Kleinserien und einer wirklichen Großer serienproduktion besteht.Dazu kommen noch die
Fragen, wann die mit viel finanzielvem Einsatz entwickelten alternativen Antriebsformen tatsächlich
einen Return of Invest erbringen, wer dienoentwürdigere Ladeinfrastruktur erreicht und finanziell
niedrigeren Kosten der Batterienvoranzutreiben eine wirklich ausreichende standardisierte und
zukunftssichere Ladeinfrastruktur darzustellen, aber auch den Entwicklungspfad zum
schadstofffreien CO2-neutrale Verbrennungsmotor konsequent weiter zu gehen. Auch
dasautomatisierte Fahren kann hier hilfreich sein, weil das Fahrzeugverhalten dann – im wahrsten Sinne
des Wortes – kalkulierbarer wird.Dabei ist es die etablierten Automobilhersteller strukturell nicht
immer einfach, mit der rasanten Veränderungsgeschwindigkeit mitzuhalten. Hier haben Start-upseinen
großen Vorteil: Ihre Organisationsstruktur erlaubt es, frische, unkonventionelle Ideen zügig umzusetzen
und sehr flexibel zu reagieren. Schon heute werden Start-ups gezielt gefördert, um neue Lungen im Bereich von Komfort, Sicherheit, Effizienz und neuen Kundenschnittstellen zu finden. Neue
Lungen, gepaart mit Investitionskraft und Erfahrungen, bieten neue Chancen auf dem Weg
der Elektromobilität, der Zukunft des Verbrennungsmotors und ganz allgemein das Auto der Zukunft.

This textbook covers handling and performance of both road and race cars. Mathematical models of
vehicles are developed always paying attention to state the relevant assumptions and to provide
explanations for each step. This innovative approach provides a deep, yet simple, analysis of the
dynamics of vehicles. The reader will soon achieve a clear understanding of the subject, which will be
of great help both in dealing with the challenges of designing and testing new vehicles and in tackling
new research topics. The book deals with several relevant topics in vehicle dynamics that are not
discussed elsewhere and this new edition includes thoroughly revised chapters, with new
developments, and many worked exercises. Praise for the previous edition: Great book! It has changed
dramatically our approach on many topics. We are now using part of its theory on a daily basis to
costantly improve ride and handling performances. — Antonino Pizzuto, Head of Chassis
Development Group at Hyundai Motor Europe Technical Center Astonishingly good! Everything is
described in a very compelling and complete way. Some parts use a different approach than other
books. — Andrea Quintarelli, Automotive Engineer

Braking systems have been continuously developed and improved throughout the last years. Major
milestones were the introduction of antilock braking system (ABS) and electronic stability program. This
reference book provides a detailed description of braking components and how they interact in
electronic braking systems.

This book describes different approaches for solving industrial problems like product design, process
optimization, quality enhancement, productivity improvement and cost minimization. Several optimization techniques are described. The book covers case studies on the applications of classical as well as evolutionary and swarm optimization tools for solving industrial issues. The content is very helpful for industry personnel, particularly engineers from the Operation, R&D and Quality Assurance sectors, and also the academic researchers of different engineering and/or business administration background.

This intermediate textbook is appropriate for students in vehicle dynamics courses, in their last year of undergraduate study or their first year of graduate study. It is also appropriate for mechanical engineers, automotive engineers, and researchers in the area of vehicle dynamics for continuing education or as a reference. It addresses fundamental and advanced topics, and a basic knowledge of kinematics and dynamics, as well as numerical methods, is expected. The contents are kept at a theoretical-practical level, with a strong emphasis on application. This third edition has been reduced by 25%, to allow for coverage over one semester, as opposed to the previous edition that needed two semesters for coverage. The textbook is composed of four parts: Vehicle Motion: covers tire dynamics, forward vehicle dynamics, and driveline dynamics Vehicle Kinematics: covers applied kinematics, applied mechanisms, steering dynamics, and suspension mechanisms Vehicle Dynamics: covers applied dynamics, vehicle planar dynamics, and vehicle roll dynamics Vehicle Vibration: covers applied vibrations, vehicle vibrations, and suspension optimization Vehicle dynamics concepts are covered in detail, with a concentration on their practical uses. Also provided are related theorems and formal proofs, along with case examples. Readers appreciate the user-friendly presentation of the science and engineering of the mechanical aspects of vehicles, and learn how to analyze and optimize vehicles' handling and ride dynamics.

Road Vehicle Dynamics: Fundamentals and Modeling with MATLAB®, Second Edition combines coverage of vehicle dynamics concepts with MATLAB v9.4 programming routines and results, along with examples and numerous chapter exercises. Improved and updated, the revised text offers new coverage of active safety systems, rear wheel steering, race car suspension systems, airsprings, four-wheel drive, mechatronics, and other topics. Based on the lead author's extensive lectures, classes, and research activities, this unique text provides readers with insights into the computer-based modeling of automobiles and other ground vehicles. Instructor resources, including problem solutions, are available from the publisher.

The AVEC symposium is a leading international conference in the fields of vehicle dynamics and advanced vehicle control, bringing together scientists and engineers from academia and automotive industry. The first symposium was held in 1992 in Yokohama, Japan. Since then, biennial AVEC symposia have been established internationally and have considerably contributed to the progress of technology in automotive research and development. In 2016 the 13th International Symposium on Advanced Vehicle Control (AVEC '16) was held in Munich, Germany, from 13th to 16th of September 2016. The symposium was hosted by the Munich University of Applied Sciences. AVEC '16 puts a special focus on automatic driving, autonomous driving functions and driver assist systems, integrated control of interacting control systems, controlled suspension systems, active wheel torque distribution, and vehicle state and parameter estimation. 132 papers were presented at the symposium and are published in these proceedings as full paper contributions. The papers review the latest research developments and practical applications in highly relevant areas of vehicle control, and may serve as a reference for researchers and engineers.

This proceedings book offers a collection of high-quality, peer-reviewed research papers presented at the International Conference of Experimental and Numerical Investigations and New Technologies (CNNTech2019) held in Zlatibor, Serbia, from 2 to 5 July 2019. Discussing various industrial, engineering and scientific applications of the engineering techniques, it provides researchers from academia and industry with a platform to present their original work and exchange ideas, experiences, information, techniques, applications and innovations in the fields of mechanical engineering, materials science, chemical and process engineering, experimental techniques, numerical methods and new technologies.
In striving for optimal comfort and safety conditions in road vehicles, today’s electronically controlled components provide a range of new options. These are developed and tested using computer simulations in software in the loop or hardware in the loop environments—an advancement that requires the modern automotive engineer to be able to build basic simulation models, handle higher level models, and operate simulation tools effectively. Combining the fundamentals of vehicle dynamics with the basics of computer simulated modeling, Road Vehicle Dynamics: Fundamentals and Modeling Aspects draws on lecture notes from undergraduate and graduate courses given by the author, as well as industry seminars and symposiums, to provide practical insight on the subject. Requiring only a first course in dynamics and programming language as a prerequisite, this highly accessible book offers end-of-chapter exercises to reinforce concepts as well as programming examples and results using MATLAB®. The book uses SI-units throughout, and begins with an introduction and overview of units and quantities, terminology and definitions, multibody dynamics, and equations of motion. It then discusses the road, highlighting both deterministic and stochastic road models; tire handling including contact calculation, longitudinal and lateral forces, vertical axis torques, and measurement and modeling techniques; and drive train components and concepts such as transmission, clutch, and power source. Later chapters discuss suspension systems, including a dynamic model of rack-and-pinion steering as well as double-wishbone suspension systems; force elements such as springs, anti-roll bars, and hydro-mounts; and vehicle dynamics in vertical, longitudinal, and lateral directions using a simple model approach to examine the effects of nonlinear, dynamic, and active force elements.

Highlighting useable knowledge, the book concludes with a three-dimensional vehicle model and typical results of standard driving maneuvers.

The increasing automation of driving functions and the electrification of powertrains present new challenges for the chassis with regard to complexity, redundancy, data security, and installation space. At the same time, the mobility of the future will also require entirely new vehicle concepts, particularly in urban areas. The intelligent chassis must be connected, electrified, and automated in order to be best prepared for this future.

In spite of all the assistance offered by electronic control systems, the latest generation of passenger car chassis still relies on conventional chassis elements. With a view towards driving dynamics, this book examines these conventional elements and their interaction with mechatronic systems. First, it describes the fundamentals and design of the chassis and goes on to examine driving dynamics with a particularly practical focus. This is followed by a detailed description and explanation of the modern components. A separate section is devoted to the axles and processes for axle development. With its revised illustrations and several updates in the text and list of references, this new edition already includes a number of improvements over the first edition.